TRIDONIC

$\square \square \square$

EM powerLED BASIC FX C 50 W

Combined emergency lighting LED Driver

Product description

- Fixed output LED Driver for mains operation with integrated Simple CORRIDOR FUNCTION (CF)
- Emergency lighting LED Driver with manual test function
- For self-contained emergency lighting
- For LED modules with a forward voltage of $15-50 \mathrm{~V}$
- SELV for output voltage < 60 V DC
- For luminaire installation
- Compact plastic casing ($183 \times 82 \times 34 \mathrm{~mm}$)
- 5 years guarantee

Properties

- 4.9 - 50 W output power
- Constant current LED operation
- 300-1,400 mA output current in mains operation selectable with I-SELECT PLUG in steps of 50 mA
- Simple CORRIDOR FUNCTION (CF) with 10% light level
- Integrated emergency lighting unit
- 1 or 3 h rated duration selectable with plug (duration link)
- Automatic shutdown of output if LED load is out of range
- Green charge status display LED
- Electronic charge system
- Polarity reversal protection for battery
- Deep discharge protection
- Short-circuit-proof battery connection

Batteries

- High-temperature cells
- NiCd or NiMH batteries
- D, Cs, LA or LAL cells
- Battery box for independent use
- 4 -year design life
- 1-year guarantee
- For battery compatibility refer to table „Battery selection"

Standards, page 9
Wiring diagrams and installation examples, page 10

TRIDONIC

SELV (8)
EM powerLED

EM powerLED BASIC FX C 50 W

Combined emergency lighting LED Driver

Technical data

Rated supply voltage	220-240 V
Mains frequency	$50 / 60 \mathrm{~Hz}$
Typ. λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, normal operation)	0.95
Typ. λ (at $230 \mathrm{~V}, 50 \mathrm{~Hz}, \mathrm{CF}$ operation)	0.45
Overvoltage protection	320 V (for 1 h)
Battery charging time	24 h
Max. open circuit voltage	60 V
Time to light	< 0.5 s from detection of emergency event
Typ. power consumption in charging	3.5 W
Output LF current ripple ($<120 \mathrm{~Hz}$)	<2\%
Output current tolerance	7%
THD normal operation	< 20 \%
THD CF operation	< 30 \%
Ambient temperature ta $>45 \mathrm{~W}$	$50^{\circ} \mathrm{C}$
Ambient temperature ta $\leq 45 \mathrm{~W}$	$55^{\circ} \mathrm{C}$
Max. casing temperature tc	$85^{\circ} \mathrm{C}$
Dimensions LxBxH	$183 \times 82 \times 34 \mathrm{~mm}$
Mains voltage changeover threshold	according to EN 60598-2-22
Type of protection	IP20
Charge current 1 h	100 mA
Charge current 3h	200 mA
Discharge current 1 h	960 mA
Discharge current 3h	960 mA
Lifetime	up to 50,000 h
Guarantee	5 years

Duration link 3 h No duration link 1 h

Note: LED Driver supplied with duration link in 3 hours position. Remove duration link for 1 hour duration. Duration link and I-SELECT PLUG must be set before battery and mains connection.

Ordering data

| Type $^{\text {® }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Type ${ }^{\text {(3) }}$	Number of battery cells	Output current	Min. output voltage ${ }^{(2)}$	Max. output voltage ${ }^{(2)}$	Min. output power	Max. output power	Input power (at $230 \mathrm{~V}, 50$ Hz, full load)	Input current (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load)	Efficiency $\begin{gathered} \text { z, (at } 230 \mathrm{~V} \text {, } \\ 50 \mathrm{~Hz} \text {) } \end{gathered}$		Ambient temperature $+a^{(1)}$	$\begin{aligned} & \text { tc/ta for } \geq \\ & 50.000 \mathrm{~h}^{(1)} \end{aligned}$	I sel resistor value
Normal operation													
EM powerLED BASIC FX 103 / 104 C 50W 50V	-	300 mA	16.6 V	50.0 V	5.0 W	15.0 W	20 W	110 mA	74	0.80	$-5 . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	open
	-	350 mA	16.6 V	50.0 V	5.8 W	17.5 W	22 W	120 mA	79	0.80	$-5 . . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$69.80 \mathrm{k} \Omega$
	-	400 mA	16.6 V	50.0 V	6.6 W	20.0 W	25 W	130 mA	79	0.85	$-5 . .55{ }^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$62.00 \mathrm{k} \Omega$
	-	450 mA	16.6 V	50.0 V	7.5 W	22.5 W	27 W	140 mA	82	0.85	$-5 . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$56.00 \mathrm{k} \Omega$
	-	500 mA	16.6 V	50.0 V	8.3 W	25.0 W	31 W	150 mA	81	0.90	$-5 . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$48.70 \mathrm{k} \Omega$
	-	550 mA	16.6 V	50.0 V	9.1 W	27.5 W	34 W	165 mA	81	0.90	$-5 . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$43.20 \mathrm{k} \Omega$
	-	600 mA	16.6 V	50.0 V	10.0 W	30.0 W	36 W	175 mA	83	0.90	-5...55 ${ }^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$36.50 \mathrm{k} \Omega$
	-	650 mA	16.6 V	50.0 V	10.8 W	32.5 W	40 W	185 mA	81	0.90	$-5 . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$28.70 \mathrm{k} \Omega$
	-	700 mA	16.6 V	50.0 V	11.6 W	35.0 W	44 W	200 mA	80	0.95	$-5 . . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$24.00 \mathrm{k} \Omega$
	-	750 mA	16.6 V	50.0 V	12.5 W	37.5 W	46 W	210 mA	82	0.95	$-5 . . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$20.50 \mathrm{k} \Omega$
	-	800 mA	16.6 V	50.0 V	13.3 W	40.0 W	49 W	225 mA	81	0.95	$-5 . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$18.00 \mathrm{k} \Omega$
	-	850 mA	16.6 V	50.0 V	14.1 W	42.5 W	52 W	235 mA	81	0.95	$-5 . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$16.00 \mathrm{k} \Omega$
	-	900 mA	16.6 V	50.0 V	15.0 W	45.0 W	55 W	250 mA	82	0.95	$-5 . . .55^{\circ} \mathrm{C}$	$85 / 55^{\circ} \mathrm{C}$	$13.30 \mathrm{k} \Omega$
	-	950 mA	15.7 V	50.0 V	15.0 W	47.5 W	58 W	265 mA	82	0.95	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$11.00 \mathrm{k} \Omega$
	-	1,000 mA	15.0 V	50.0 V	15.0 W	50.0 W	61 W	275 mA	82	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$9.31 \mathrm{k} \Omega$
	-	1,050 mA	15.0 V	47.6 V	15.0 W	50.0 W	60 W	280 mA	84	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$7.87 \mathrm{k} \Omega$
	-	1,100 mA	15.0 V	45.5 V	15.0 W	50.0 W	60 W	280 mA	88	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$6.49 \mathrm{k} \Omega$
	-	1,150 mA	15.0 V	43.5 V	15.0 W	50.0 W	60 W	280 mA	88	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$4.70 \mathrm{k} \Omega$
	-	1,200 mA	15.0 V	41.7 V	15.0 W	50.0 W	60 W	280 mA	88	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$3.83 \mathrm{k} \Omega$
	-	1,250 mA	15.0 V	40.0 V	15.0 W	50.0 W	60 W	280 mA	88	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$2.70 \mathrm{k} \Omega$
	-	1,300 mA	15.0 V	38.5 V	15.0 W	50.0 W	60 W	280 mA	88	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$2.20 \mathrm{k} \Omega$
	-	1,350 mA	15.0 V	37.0 V	15.0 W	50.0 W	61 W	280 mA	87	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$1.50 \mathrm{k} \Omega$
	-	1,400 mA	15.0 V	35.0 V	15.0 W	50.0 W	62 W	285 mA	87	0.97	$-5 . .50^{\circ} \mathrm{C}$	$85 / 50^{\circ} \mathrm{C}$	$\begin{aligned} & \text { short circuit } \\ & (0 \Omega) \end{aligned}$
CF operation						\square							
	-	30 mA	-	-	0.5 W	1.7 W	4.0 W	50 mA	50	0.40	-	-	open
	-	38 mA	-	-	0.6 W	2.1 W	4.5 W	50 mA	56	0.40	-	-	$69.80 \mathrm{k} \Omega$
	-	39 mA	-	-	0.6 W	2.1 W	4.5 W	50 mA	56	0.40	-	-	$62.00 \mathrm{k} \Omega$
	-	52 mA	-	-	0.9 W	2.9 W	5.0 W	55 mA	60	0.40	-	-	$56.00 \mathrm{k} \Omega$
	-	52 mA	-	-	0.9 W	2.9 W	5.0 W	55 mA	60	0.40	-	-	$48.70 \mathrm{k} \Omega$
	-	52 mA	-	-	0.9 W	2.9 W	5.0 W	55 mA	70	0.40	-	-	$43.20 \mathrm{k} \Omega$
	-	66 mA	-	-	1.1 W	3.6 W	5.5 W	55 mA	73	0.45	-	-	$36.50 \mathrm{k} \Omega$
	-	69 mA	-	-	1.1 W	3.8 W	5.5 W	55 mA	73	0.45	-	-	$28.70 \mathrm{k} \Omega$
	-	80 mA	-	-	1.3 W	4.4 W	6.0 W	60 mA	75	0.45	-	-	$24.00 \mathrm{k} \Omega$
	-	83 mA	-	-	1.4 W	4.6 W	6.0 W	60 mA	83	0.45	-	-	$20.50 \mathrm{k} \Omega$
	-	85 mA	-	-	1.4 W	4.7 W	6.0 W	60 mA	83	0.45	-	-	$18.00 \mathrm{k} \Omega$
EM powerLED BASIC FX 103 / 104 C 50W 50V	-	92 mA	-	-	1.5 W	5.1 W	6.5 W	60 mA	85	0.50	-	-	$16.00 \mathrm{k} \Omega$
	\triangle	92 mA	-	-	1.5 W	5.1 W	6.5 W	60 mA	92	0.50	-	-	$13.30 \mathrm{k} \Omega$
	-	105 mA	-	-	1.6 W	5.8 W	7.0 W	60 mA	86	0.50	-	-	$11.00 \mathrm{k} \Omega$
	-	106 mA	-	-	1.6 W	5.8 W	7.0 W	60 mA	86	0.50	-	-	$9.31 \mathrm{k} \Omega$
	-	118 mA	-	-	1.8 W	6.2 W	7.5 W	65 mA	87	0.55	-	-	$7.87 \mathrm{k} \Omega$
	-	119 mA	-	-	1.8 W	6.0 W	7.5 W	65 mA	87	0.55	-	-	$6.49 \mathrm{k} \Omega$
	-	130 mA	-	-	2.0 W	6.2 W	8.0 W	65 mA	88	0.55	-	-	$4.70 \mathrm{k} \Omega$
	-	131 mA	-	-	2.0 W	6.0 W	8.0 W	65 mA	88	0.55	-	-	$3.83 \mathrm{k} \Omega$
	-	144 mA	-	-	2.2 W	6.3 W	8.0 W	65 mA	88	0.55	-	-	$2.70 \mathrm{k} \Omega$
	-	144 mA	-	-	2.2 W	6.1 W	8.0 W	65 mA	88	0.60	-	-	$2.20 \mathrm{k} \Omega$
	-	145 mA	-	-	2.2 W	5.9 W	8.5 W	65 mA	88	0.60	-	-	$1.50 \mathrm{k} \Omega$
	-	158 mA	-	-	2.4 W	6.1 W	9.0 W	70 mA	83	0.60	-	-	$\begin{aligned} & \text { short circuit } \\ & (0 \Omega) \end{aligned}$
Emergency operation													
EM powerLED BASIC FX 103 C 50W 50V	3	see page 8	15 V	50 V	2.1 W	2.75 W	-	-	-	-	-	-	all
EM powerLED BASIC FX 104 C 50W 50V	4	see page 8	15 V	50 V	2.7 W	3.50 W	-	-	-	-	-	-	all

[^0]
Product description

- For connection to the emergency lighting LED Driver
- For checking the device function

Ordering data

Type	Article number	Packaging, bag	Packaging, carton	Weight per pc.
Test switch EM 2	$\mathbf{8 9 8 0 5 2 7 7}$	$25 \mathrm{pc}(\mathrm{s})$.	$600 \mathrm{pc}(\mathrm{s})$.	0.009 kg

Status indication green LED

Product description

- A green LED indicates that charging current is flowing into the battery

Ordering data

Type	Article number	Packaging, bag	Packaging, carton	Weight per pc.
LED EM green	$\mathbf{8 9 8 9 9 6 0 5}$	$25 \mathrm{pc}(\mathrm{s})$.	$200 \mathrm{pc}(\mathrm{s})$.	0.011 kg
LED EM green, ultra high brightness	$\mathbf{8 9 8 9 9 7 5 6}$	$25 \mathrm{pc}(\mathrm{s})$.	$200 \mathrm{pc}(\mathrm{s})$.	0.012 kg

Product description

- Motion detector for luminaire installation
- Motion detection through glass and thin materials (except metal)
- For automatic on/off switching of electronic ballasts
- Bright-out function: luminaire is not switched on if there is adequate brightness
- Delay time, detection range and light value for the bright-out function can be set via 9 dip switches
- Max. installation height 5 m
- Two housing options allowing flexible installation
- Variable detection area (100-10 \%)
- Zero cross switching supported
- 5 years guarantee

smartSWITCH HF 5DP S f

Ordering data

Type	Article number	Dimensions $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$	Packaging, carton	Weight per pc.
smartSWITCH HF 5DP \mathbf{f}	$\mathbf{2 8 0 0 2 2 1 4}$	$70 \times 36.5 \times 24.5 \mathrm{~mm}$	$5 \mathrm{pc}(\mathrm{s})$.	0.040 kg
$\boldsymbol{s m a r t S W I T C H ~ H F ~ 5 D P ~ S ~ f ~}$	$\mathbf{2 8 0 0 2 2 3 5}$	$58 \times 48.5 \times 24.5 \mathrm{~mm}$	$5 \mathrm{pc}(\mathrm{s})$.	0.040 kg

Product description

- Ready-for-use resistor to set output current value
- Resistor is base insulated
- Resistor power 0.25 W
- Resistor value tolerance $\pm 1 \%$

Type	Article number	Colour	Marking	Resistor value	Packaging bag	Weight per pc.
I-SELECT PLUG E	28001167	Green	69k8	$69.80 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001166	Green	62k	$62.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000627	Green	56k	$56.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000626	Green	48k7	$48.70 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000625	Green	43k2	$43.20 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000624	Green	36k5	$36.50 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000622	Green	28k7	$28.70 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001165	Green	24k	$24.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001164	Green	20k5	$20.50 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001163	Green	18k	$18.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001162	Green	16k	$16.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001161	Green	13k3	$13.30 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001160	Green	11k	$11.00 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000617	Green	9k31	$9.31 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001159	Green	7k87	$7.87 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000616	Green	6 k 49	$6.49 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001158	Green	4k7	$4.70 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001157	Green	3k83	$3.83 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001156	Green	2k7	$2.70 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001155	Green	2k2	$2.20 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28001154	Green	1k5	$1.50 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg
I-SELECT PLUG E	28000612	Green	OR	$0 \mathrm{k} \Omega$	$10 \mathrm{pc}(\mathrm{s})$.	0.001 kg

它 쓸 NiCd Battery pack 1.8-4.5 Ah
 Batteries

Product description

- High-temperature NiCd battery pack for use with emergency lighting units

Properties

- Constant high-temperature operation - depending on the emergency lighting unit used (refer to respective emergency control gear datasheet)
- Good charging properties at high temperature
- High energy maintenance of the charged battery
- 4 year lifetime in operation at max. temperature
- Certified quality manufacturer
- Casing material made of polycarbonate
- 0.2 m double-insulated cable with plug connection
- 0.8 m double-insulated cable with plug and pre-stripped ends for connection with the emergency unit
- $1.0 \mathrm{~mm}^{2}$ solid wire, pre-stripped
- Suitable for emergency lighting equipment as per IEC 60598-2-22

Product description

- High-temperature NiMH battery pack for use with emergency lighting units
- 4-year design life
- 1-year guarantee

Properties

- Constant high-temperature operation
- Temperature depending on the used emergency lighting unit (refer to respective emergency control gear datasheet)
- Good charging properties at high temperature
- High energy maintenance of the charged battery
- Certified quality manufacturer
- Casing material made of polycarbonate
- $1.0 \mathrm{~mm}^{2}$ stranded wire
- Suitable for emergency lighting equipment as per IEC 60598-222

1. Standards

- EN 55015
- EN 61000-3-2
- EN 61000-3-3
- EN 61347-2-13
- EN 61547
- EN 62384
- EN 61347-2-7
- according to EN 50172
- according to EN 60598-2-22

1.1 Glow-wire test

according to EN $60598-1$ with increased temperature of $850^{\circ} \mathrm{C}$ passed.

1.2 Temperature range

The LED Driver life duration is related to the ambient temperature ta. The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max. or higher, ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

1.3 Insulation and electric strength testing of luminaires

Electronic LED Driver can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 Voc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal. The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with $1,500 \mathrm{VAC}$ (or $1,414 \times 1,500 \mathrm{VDC}$). To avoid damage to the electronic devices this test must not be conducted.

2. Thermal data

2.1 Expected Lifetime

Average lifetime 50,000 hours under rated conditions with a failure rate of less than 10%. Average failure rate of 0.2% per 1000 operating hours.

Expected lifetime

Type	Output power	ta	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$
EM po	10 W	tc	$56^{\circ} \mathrm{C}$	$66^{\circ} \mathrm{C}$	$71^{\circ} \mathrm{C}$
		lifetime	> 100,000 h	> 100,000 h	> 100,000 h
	20 W	tc	$59{ }^{\circ} \mathrm{C}$	$69^{\circ} \mathrm{C}$	$74{ }^{\circ} \mathrm{C}$
		lifetime	> 100,000 h	> 100,000 h	> 100,000 h
	30 W	tc	$63^{\circ} \mathrm{C}$	$73^{\circ} \mathrm{C}$	$78^{\circ} \mathrm{C}$
		lifetime	> 100,000 h	$>100,000 \mathrm{~h}$	> 100,000 h
	40 W	†c	$69^{\circ} \mathrm{C}$	$79^{\circ} \mathrm{C}$	$79^{\circ} \mathrm{C}$
		lifetime	> 100,000 h	$>90,000 \mathrm{~h}$	$>90,000 \mathrm{~h}$
	45W	tc	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
		lifetime	> 100,000 h	>90,000 h	> 50,000 h
	50 W	tc	$76^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	\times
		lifetime	> 95,000 h	>50,000 h	x

[^1]The relation of tc to ta temperature depends also on the luminaire design. If the measured tc temperature is approx. 5 K below tc max., ta temperature should be checked and eventually critical components (e.g. ELCAP) measured. Detailed information on request.

3. Installation / Wiring

3.1 Wiring diagrams

Wiring diagram EM powerLED BASIC FX without sensor

When using the EM powerLED without a sensor, connect the terminals C / F and
L link with a wire.

The connected LED module will be used for mains and emergency operation.

Switching behaviour

$\mathbf{S / L}$	C/F	LED
off	off	off
off	on	off
on	off	10%
on	on	100%

The mains power must be removed before changing the LED load.
Secondary switching of LEDs is not allowed and may cause damage to the LEDs. The hot plug-in of LEDs during normal operation may result in high current peaks.

Note

The EM powerLED BASIC FX 50W uses pulse width modulation (PWM) for the LED operation in CORRIDOR mode. This can have an adverse effect on video recording equipment e.g. cctv.
Caution should be observed when using the CORRIDOR FUNCTION in cctv monitored areas.

Wiring diagram EM powerLED BASIC FX with sensor

3.2 Wiring type and cross-section

Wiring

Mains (N, L, C/F, L link, S/L)
$0.5-1.5 \mathrm{~mm} 2$ solid or fine-stranded
$0.5-1.0 \mathrm{~mm} 2$ fine-stranded with ferrule
LED (LED + LED -)
Batteries (Bat +, Bat -)
I set

Wiring

Test switch
Indication LED
$0.2-0.5 \mathrm{~mm}^{2}$ solid or fine-stranded $0.25 \mathrm{~mm}^{2}$ fine-stranded with ferrule

Use one wire for each terminal connector only. Use each strain relief channel for one cable only.

$\max .=10 \mathrm{~mm}$
$\mathrm{min} .=6,3 \mathrm{~mm}$

Max. lead insulation diameter

Battery	2.1 mm
Test switch	2.1 mm
Indicator LED	2.1 mm

Maximum lead length

 LEDstatus indication LED batteries

3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

Installation instruction

Max. torque for the mounting screws: $0.5 \mathrm{Nm} / \mathrm{M} 4$.

3.4 Fixing conditions

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire. Is not suitable for fixing in corner.

3.5 Wiring guidelines

- The output to the LED is DC but has high frequency content, which should be considered for good EMC compliance.
- LED leads should be separated from the mains connections and wiring for good EMC performance.
- Maximum lead length on the LED terminals is 3 m . For a good EMC performance keep the LED wiring as short as possible.
- The secondary wires (LED module) should be routed in parallel to ensure good EMC performance.
- Maximum lead length for the Test switch and Indicator LED connection is 1 m . The test switch and Indicator LED wiring should be separated from the LED leads to prevent noise coupling.
- Battery leads are specified with 0.5 mm cross section and a length of 1.3 m .
- To avoid the damage of the control gear, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

To ensure that a luminaire containing LED emergency units complies with EN 55015 for radio frequency conducted interference in both normal and emergency mode it is essential to follow good practice in the wiring layout.

Within the luminaire the switched and unswitched 50 Hz supply wiring must be routed as short as possible and be kept as far away as possible from the LED leads.Through wiring may affect the emc performance of the luminaire.

The length of LED leads must not be exceeded.

The output current depends on the forward voltage and the tolerance of the LED modules.

4. Mechanical data

4.1 Housing properties

- Polycarbonat white
- Type of protection IP 20

4.2 Mechanichal data accessories

LED status indicator

- Green
- Mounting hole 6.5 mm diameter, 1 - 1.6 mm thickness
- Lead length $0.3 \mathrm{~m} / 1.0 \mathrm{~m}$
- Insulation rating: $90^{\circ} \mathrm{C}$

Test switch

- Mounting hole 7.0 mm diameter
- Lead length 0.55 m

Battery leads

- Quantity: 1 red and 1 black
- Length: 1.3 m
- Wire type: $0.5 \mathrm{~mm}^{2}$ solid conductor
- Insulation rating: $90^{\circ} \mathrm{C}$

Battery end termination
Push on 4.8 mm receptacle to suit battery spade fitted with insulating cover

Module end termination
8.0 mm stripped insulation

Two-piece batteries are supplied with a 200 mm lead with 4.8 mm receptacle at each end and insulting covers to connect the separate sticks together.

5. Electrical data

5.1 Maximum loading of automatic circuit breakers

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current	
Installation \varnothing	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$\mathrm{I}_{\text {max }}$	time
EM powerLED BASIC FX 103 C 50W 50V	20	30	40	50	16	24	32	40	6.6 A	$30 \mu \mathrm{~s}$
EM powerLED BASIC FX 104 C 50W 50V	20	30	40	50	16	24	32	40	6.6 A	$30 \mu \mathrm{~s}$

5.2 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load) in \%

Type	THD	3	5	7
EM powerLED BASIC FX 103 C 50W 50V	6.5%	4.5%	2%	1%
EM powerLED BASIC FX 104 C 50W 50V	6.5%	4.5%	2%	1%

5.3 Insulation matrix

	Mains	Switched Live	C/F	L link	Battery, LED, Test switch, Indicator LED	1-Select 2
Mains	-	-	-	-	-•	
Switched Live	-	-	-	-	-•	-
C/F	-	-	-	-	-	-
L link	-	-	-	-	-•	
Battery, LED, Test switch, Indicator LED	-•	-•	-•	-	-	.
1-Select 2	-	-	-	-	-•	-
- Represents basic insulat - Represents double or	ed insula					

5.4 Typ. LED current/voltage characteristics

The LED current in emergency mode is automatically adjusted by the EM powerLED module based on the total forward voltage of the LED modules connected and the associated battery.

EM powerLED BASIC FX 103 C 50W 50V - 3 cells
Article number: 89800429
3.6 V battery voltage,

750-960 mA battery discharge current

EM powerLED BASIC FX 104 C 50W 50V - 4 cells
Article number: 89800411
4.8 V battery voltage,
$750-960 \mathrm{~mA}$ battery discharge current

LED current at nominal battery voltage and min. battery discharge current

LED current at nominal battery voltage and max. battery discharge current

LED peak current at start in emergency mode - 3 cells

Voltage	Inrush current	Duration
46.0 V	209 mA	7.35 ms
43.5 V	218 mA	7.85 ms
41.0 V	229 mA	8.10 ms
38.5 V	241 mA	8.25 ms
36.0 V	255 mA	8.35 ms
33.5 V	270 mA	8.55 ms
31.0 V	288 mA	8.85 ms
28.5 V	307 mA	9.10 ms
26.0 V	330 mA	9.40 ms
23.0 V	354 mA	9.80 ms
20.5 V	383 mA	10.45 ms
18.0 V	417 mA	11.40 ms
15.5 V	455 mA	11.95 ms
13.0 V	500 mA	15.10 ms

Note: LED peak current is measured at the max. battery discharge current.

5.5 Output current setting

Output current can be set by connecting a resistor between the 2 "I set" terminals. Relationship between output current and resistor value can be found at the table "Specific technical data". Resistor values specified from standardised resistor value ranges.
Resistor value tolerance has to be $\leq 1 \%$.
Resistor power has to be $\geq 0.1 \mathrm{~W}$.
Resistor detection at each start.
Change of the resistor value during the operation will be not considered.
Resistors for the main output current values can be ordered from Tridonic (see accessories).

LED peak current at start in emergency mode - 4 cells

Voltage	Inrush current	Duration
46.5 V	252 mA	8.65 ms
44.0 V	259 mA	9.30 ms
41.5 V	268 mA	8.10 ms
39.0 V	288 mA	8.45 ms
36.5 V	300 mA	9.45 ms
34.0 V	323 mA	9.60 ms
31.5 V	340 mA	9.95 ms
29.0 V	364 mA	10.85 ms
26.0 V	388 mA	11.60 ms
23.5 V	414 mA	12.40 ms
21.0 V	446 mA	13.35 ms
18.5 V	479 mA	15.20 ms
16.0 V	520 mA	16.90 ms
13.5 V	564 mA	18.95 ms

6. Functions

6.1 Short-circuit behaviour

In case of a short circuit the unit switches to shut down mode. After elimination of the short circuit a mains reset (SL off/on) is necessary.

6.2 No-load operation or load loss during operation

LED Driver will detect a load loss during operation. In this case and no-load operation the max. output voltage can apply at the LED output for max. 5 s before LED Driver shuts down. Mains reset is required to restart the LED Driver.

6.3 Overload protection

LED Driver will switch off at overload operation. Mains reset is required to restart the LED Driver.

6.4 Underload operation

LED Driver will switch off at underload operation. Mains reset is required to restart the LED Driver.
6.5 Forward voltage out of range

If the forward voltage is out of range the unit switches to shut down mode. After elimination of the short circuit a mains reset (SL off/on) is necessary.

6.6 Duration link selection

Duration	Usage duration link
$\mathbf{3 ~ h}$	
$\mathbf{1 h}$	

Note: LED Driver supplied with duration link in 3 hours position. Remove duration link for 1 hour duration. Duration link and I-SELECT PLUG must be set before battery and mains connection.

7. Battery data

7.1 Battery selection

			EM powerLED BASIC FX C $50 \mathrm{~W} 50 \mathrm{~V}, 1 / 3 \mathrm{~h}$					
				Type Article no.	EM powerLED BASIC FX 103 C 50W 50V		EM powerLED BASIC FX 104 C 50W 50V	
					89800429		89800411	
				Cells	3 cells		4 cells	
				Duration	1 h	3 h	1 h	3 h
Technology and capacity	Design	Number of cells	Type	Article no.	Assignable batteries			
NiCd 4 Ah D cells	stick	1×3	Accu-NiCd 3A 55	28002773		-		
	stick	1×4	Accu-NiCd 4A 55	89800089				
	stick + stick	$2+2$	Accu-NiCd 4C 55	28002775				-
	side by side	3×1	Accu-NiCd 3B 55	89800384		-		-
	side by side	4×1	Accu-NiCd 4B 55	89800385				
NiMH 2.2 Ah Cs cells	stick	1×3	Accu-NiMH 3A	28002088	-			
	stick	1×4	Accu-NiMH 4A	28002089			-	
NiMH 4 Ah LA cells	stick	1×3	Accu-NiMH 4Ah 3A CON	89800441		-		
	stick	1×4	Accu-NiMH 4Ah 4A CON	89800442				-
	stick + stick	$2+2$	Accu-NiMH 4Ah 4C CON	89800438				-
NiCd 1.8 Ah Cs cells	$\underline{\text { remote box }}$	1×3	Pack-NiCd 3C CON	28001221	-			
	remote box	1×4	Pack-NiCd 4C CON	28001222			-	
NiCd 4.5 Ah D cells	remote box	1×3	Pack-NiCd 3D CON	89800389		-		
	remote box	1×4	Pack-NiCd 4D CON	89800390				-
NiMH 2.2 Ah Cs cells	remote box	1×3	Pack-NiMH 2.2Ah 3 CON	28001898	-			
	remote box	1×4	Pack-NiMH 2.2Ah 4 CON	28001899			-	
NiMH 4 Ah LAL cells	$\underline{\text { remote box }}$	1×3	Pack-NiMH 4Ah 3 CON	28001896		-		
	remote box	1×4	Pack-NiMH 4Ah 4 CON	28001897				-

7.2 Accu-NiCd		7.5 Accupack-NiMH	
4.2 / 4.5 Ah		2.2 Ah	
Battery voltage/cell	1.2 V	Battery voltage/cell	1.2 V
Cell type	D	Cell type	Cs
Case temperature range		Ambient temperature range	
to ensure 4 years design life	$+5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	to ensure 4 years design life	$+5^{\circ} \mathrm{C}$ to $+35{ }^{\circ} \mathrm{C}$
Max. short term temperature (reduced lifetime)	$70^{\circ} \mathrm{C}$	tc point	$+40^{\circ} \mathrm{C}$
Max. number discharge cycles	12 cycles per year plus	Max. short term temperature (reduced lifetime) 70	
	4 cycles during comissioning	Max. number discharge cycles	4 cycles per year plus 4 cycles during
Max. storage time	6 months		comissioning
		Max. storage time	12 months
7.3 Accu-NiMh			
		4.0 Ah	
2.2 Ah		Battery voltage/cell	
Battery voltage/cell	1.2 V	Cell type	
Cell type	Cs	Ambient temperature range	
Case temperature range		to ensure 4 years design life	$+5^{\circ} \mathrm{C}$ to $+35{ }^{\circ} \mathrm{C}$
to ensure 4 years design life	$+5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$		$+40^{\circ} \mathrm{C}$
Max. short term temperature (reduced lifetime)	$70^{\circ} \mathrm{C}$	Max. short term temperature (reduced lifetime) $70^{\circ} \mathrm{C}$	
Max. number discharge cycles	4 cycles per year plus 30 cycles during comissioning	Max. number discharge cycles	4 cycles per year plus 4 cycles during comissioning
Max. storage time	12 months	Max. storage time	12 months
4.0 Ah		7.6 Batteries	
Battery voltage/cell	LA Connection method: $48 \times 0.5 \mathrm{~mm}$ spade tag welded to end of cell	Connection method: $4.8 \times 0.5 \mathrm{~mm}$ spade tag welded to end of cell	
Cell type			
Case temperature range			
to ensure 4 years design life	$+5^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C} \quad$ For stick packs this connection is accessible after the battery caps have been		
Max. short term temperature (reduced lifetime)	$70^{\circ} \mathrm{C}$	For stick packs this connection is accessible after the battery caps have been fitted.	
Max. number discharge cycles	4 cycles per year plus		
	30 cycles during comissioning	To inhibit inverter operation disconnect the batteries by removing the connector from the battery spade tag.	
Max. storage time7.4 Accupack-NiCd			
		For further information refer to corresponding battery datasheet.	
		7.4 Accupack-NiCd	
1.8 Ah		7.7 Storage, installation and commissioning	
$\begin{array}{ll}\text { Battery voltage/cell } & 1.2 \mathrm{~V} \\ \text { Cell type } & \text { Cs }\end{array}$			
		Relevant information about storage conditions, installation and commissioning are provided in the battery datasheets.	
Ambient temperature range			
to ensure 4 years design life $\quad+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$			
tc point $+45^{\circ} \mathrm{C}$			
Max. short term temperature (reduced lifetime)	$70^{\circ} \mathrm{C}$	8. Miscellaneous	
Max. number discharge cycles	4 cycles per year plus		
	4 cycles during comissioning	8.1 Maximum number of switching cycles	
Max. storage time	6 months	All LED Drivers are tested with 50,000 switching cycles. The actually achieved number of switching cycles is significantly higher.	
4.5 Ah			
Battery voltage/cell	1.2 V	8.2 Additional information	
Cell type	D		
Ambient temperature range		Additional technical information at www.tridonic.com \rightarrow Technical Data	
to ensure 4 years design life	$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$		
tc point	$+45^{\circ} \mathrm{C}$	Guarantee conditions at www.tridonic.com \rightarrow Services	
Max. short term temperature (reduced lifetime)	$70^{\circ} \mathrm{C}$		
Max. number discharge cycles	4 cycles per year plus 4 cycles during comissioning	Lifetime declarations are informative and represent no warranty claim. No warranty if device was opened.	
Max. storage time	6 months		

[^0]: ${ }^{(1)}$ Ambient temperature range ta defined in normal operation
 ${ }^{(2)}$ Output voltage range defined in normal operation. LED forward voltage will decrease in CF operation.
 ${ }^{(3)} \mathrm{EM}=$ Emergency

[^1]: $x=$ not permitted

