## TRIDONIC

## LED Driver

Universal wide voltage (UNV)

Driver LC 35W 150-700mA 54V 0-10V C EXC UNV
Compact excite series (US applications)

## Product description

- Constant current LED Driver
- Only for US applications
- Dimmable via 0 ... 10 V interface
- Dimming range $1-100 \%$
- Class 2
- UL Listed Class P
- FCC Part 15
- Adjustable output current between 150 and 700 mA via ready2mains Programmer or I-SELECT 2 plugs
- Max. output power 35 W
- Up to 88.4 \% efficiency
- Up to 100,000 hrs lifetime
- 5-year guarantee


## Housing properties

- Casing: metal, white
- Type of protection IP20
- Dry and damp location


## Functions

- Adjustable output current in 1-mA-steps (ready2mains, I-SELECT 2)
- Dimmable via 0 ... 10 V interface
- Protective features (overtemperature, short-circuit, overload, noload, input voltage range)


## Benefits

- Operating windows for maximum compatibility
- Added energy savings with dimming via 0 .... 10 V interface
- Configurable via ready2mains and I-SELECT 2
- Tailor your dimming response with either Linear or Logarithmic Dimming Curves



## Typical applications

- For linear/area lighting in office, education, healthcare, and general lighting applications


[^0]TRIDONIC
LED Driver
Universal wide voltage (UNV)

Driver LC 35W 150-700mA 54V 0-10V C EXC UNV
Compact excite series (US applications)


Dimensions in mm

## Ordering data

| Type | Article <br> number | Packaging <br> carton | Packaging, <br> low volume | Packaging, <br> high volume | Weight <br> per |
| :--- | :--- | :--- | :--- | :--- | :--- |
| LC 35/150-700/54 0-10V C EXC UNV | $\mathbf{8 7 5 0 0 6 8 3}$ | $\mathbf{1 5 ~ p c ( s ) . ~}$ | $360 \mathrm{pc}(\mathrm{s})$. | $1,800 \mathrm{pc}(\mathrm{s})$. | 0.318 kg |

## LED Driver

Universal wide voltage (UNV)

## Specific technical data

| Type | Output current ${ }^{(3)}$ (5) | Min. forward voltage | Max. forward voltage | Max. output power (at 120 V , 60 Hz , full load) | Typ. power consumption (at $120 \mathrm{~V}, 60 \mathrm{~Hz}$, full load) | Typ. current consumption (at $120 \mathrm{~V}, 60$ Hz, full load) | $\begin{aligned} & \text { Max. output } \\ & \text { power (at } \\ & 277 \mathrm{~V}, 60 \mathrm{~Hz}, \\ & \text { full load) } \end{aligned}$ | Typ. power consumption (at $277 \mathrm{~V}, 60 \mathrm{~Hz}$, full load) | Typ. current consumption at $277 \mathrm{~V}, 60 \mathrm{~Hz}$, full load) | tc temperature ${ }^{\text {© }}$ | Ambient temperature ta max. | I-SELECT 2 resistor value ${ }^{(4)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 150 mA | 18 V | 54.0 V | 8.1 W | 11.4 W | 105 mA | 8.1 W | 11.7 W | 68 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | open |
|  | 200 mA | 18 V | 54.0 V | 10.8 W | 14.4 W | 126 mA | 10.8 W | 14.8 W | 75 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $25.00 \mathrm{k} \Omega$ |
|  | 250 mA | 18 V | 54.0 V | 13.5 W | 17.3 W | 148 mA | 13.5 W | 17.5 W | 85 mA | $70^{\circ} \mathrm{C}$ | 25 ... $+55^{\circ} \mathrm{C}$ | $20.00 \mathrm{k} \Omega$ |
|  | 300 mA | 18 V | 54.0 V | 16.2 W | 20.1 W | 171 mA | 16.2 W | 20.2 W | 94 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $16.67 \mathrm{k} \Omega$ |
|  | 350 mA | 18 V | 54.0 V | 18.9 W | 23.0 W | 196 mA | 18.9 W | 23.0 W | 103 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $14.29 \mathrm{k} \Omega$ |
| LC 35/150-700/54 0-10V C | 400 mA | 18 V | 54.0 V | 21.6 W | 26.1 W | 219 mA | 21.6 W | 26.0 W | 110 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $12.50 \mathrm{k} \Omega$ |
| EXC UNV | 450 mA | 18 V | 54.0 V | 24.3 W | 28.7 W | 245 mA | 24.3 W | 28.5 W | 118 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $11.11 \mathrm{k} \Omega$ |
|  | 500 mA | 18 V | 54.0 V | 27.0 W | 31.6 W | 270 mA | 27.0 W | 31.5 W | 128 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $10.00 \mathrm{k} \Omega$ |
|  | 550 mA | 18 V | 54.0 V | 29.7 W | 34.6 W | 293 mA | 29.7 W | 34.1 W | 137 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $9.09 \mathrm{k} \Omega$ |
|  | 600 mA | 18 V | 54.0 V | 32.4 W | 37.3 W | 313 mA | 32.4 W | 35.0 W | 146 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $8.33 \mathrm{k} \Omega$ |
|  | 650 mA | 18 V | 53.8 V | 35.0 W | 40.6 W | 339 mA | 35.0 W | 39.9 W | 156 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | $7.69 \mathrm{k} \Omega$ |
|  | 700 mA | 18 V | 50.0 V | 35.0 W | 40.2 W | 337 mA | 35.0 W | 39.6 W | 156 mA | $70^{\circ} \mathrm{C}$ | $-25 \ldots+55^{\circ} \mathrm{C}$ | short circuit ( $0 \Omega$ ) |

[^1]${ }^{(3)}$ The table only lists a number of possible operating points but does not cover each single point. The output current can be set within the total value range in 1 -mA-steps.
(4) Not compatible with I-SELECT (generation 1).
${ }^{(5)}$ Output current is mean value.
${ }^{\text {© }} 5$-year guarantee.

## Product description

- Ready-for-use resistor to set output current value
- Compatible with LED Driver featuring I-SELECT 2 interface; not compatible with I-SELECT (generation 1)
- Resistor is base insulated
- Resistor power 0.25 W
- Current tolerance $\pm 2 \%$ to nominal current value
- Compatible with LED Driver series PRE and EXC


## Example of calculation

- $R[k \Omega]=5 \mathrm{~V} / \mathrm{I}$ _out $[\mathrm{mA}] \times 1000$
- Resistor value tolerance $\leq 1 \%$; resistor power $\geq 0.1 \mathrm{~W}$; base insulation necessary
- When using a resistor value beyond the specified range, the output current will automatically be set to the minimum value (resistor value too big), respectively to the maximum value (resistor value too small)

|  |  |  |  |  |  | 3,5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Article number | ol | Marking | Current | Resistor value | Packaging bag | Weight per pc. |
| I-SELECT 2 PLUG 150MA BL | 28001102 | Blue | 0150 mA | 150 mA | $33.33 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 175MA BL | 28001103 | Blue | 0175 mA | 175 mA | 28.57 k | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 200MA BL | 28001104 | Blue | 0200 mA | 200 mA | $25.00 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 225MA BL | 28001105 | Blue | 0225 mA | 225 mA | $22.22 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 250MA BL | 28001106 | Blue | 0250 mA | 250 mA | $20.00 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 275MA BL | 28001107 | Blue | 0275 mA | 275 mA | $18.18 \mathrm{k} \mathrm{\Omega}$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 300MA BL | 28001108 | Blue | 0300 mA | 300 mA | $16.67 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 325MA BL | 28001109 | Blue | 0325 mA | 325 mA | $15.38 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 350MA BL | 28001110 | Blue | 0350 mA | 350 mA | $14.29 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 375MA BL | 28001111 | Blue | 0375 mA | 375 mA | $13.33 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 400MA BL | 28001112 | Blue | 0400 mA | 400 mA | $12.50 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 425MA BL | 28001251 | Blue | 0425 mA | 425 mA | $11.76 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 450MA BL | 28001113 | Blue | 0450 mA | 450 mA | $11.11 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 475MA BL | 28001252 | Blue | 0475 mA | 475 mA | $10.53 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 500MA BL | 28001114 | Blue | 0500 mA | 500 mA | $10.00 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 550MA BL | 28001115 | Blue | 0550 mA | 550 mA | $9.09 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 600MA BL | 28001116 | Blue | 0600 mA | 600 mA | $8.33 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 650MA BL | 28001117 | Blue | 0650 mA | 650 mA | $7.69 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG 700MA BL | 28001118 | Blue | 0700 mA | 700 mA | $7.14 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |
| I-SELECT 2 PLUG MAX BL | 28001099 | Blue | MAX | MAX | $0.00 \mathrm{k} \Omega$ | $10 \mathrm{pc}(\mathrm{s})$. | 0.001 kg |

## 1. Standards

UL 8750
CSA C22.2
FCC Part 15, Class A
Product not designed for European Economic Area
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:
(1) this device may not cause harmful interference, and
(2) this device must accept any interference received, including interference that may cause undesired operation.

## 2. Thermal details and life-time

### 2.1 Expected life-time

| Expected life-time 120 V |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Output current | ta | $45^{\circ} \mathrm{C} / 113^{\circ} \mathrm{F}$ | $50^{\circ} \mathrm{C} / 122{ }^{\circ} \mathrm{F}$ | $55^{\circ} \mathrm{C} / 131{ }^{\circ} \mathrm{F}$ |
| LC 35/150-700/54 0-10V C EXC UNV | 150-700 mA | tc | $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$ | $65^{\circ} \mathrm{C} / 149^{\circ} \mathrm{F}$ | $70^{\circ} \mathrm{C} / 158^{\circ} \mathrm{F}$ |
|  |  | Life-time | > 100,000 h | 70,000 h | 50,000 h |
| Expected life-time 277 V |  |  |  |  |  |
| Type | Output current | ta | $45^{\circ} \mathrm{C} / 113^{\circ} \mathrm{F}$ | $50^{\circ} \mathrm{C} / 122{ }^{\circ} \mathrm{F}$ | $55^{\circ} \mathrm{C} / 131{ }^{\circ} \mathrm{F}$ |
| LC 35/150-700/54 0-10V C EXC UNV | 150-700 mA | tc | $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$ | $65^{\circ} \mathrm{C} / 149^{\circ} \mathrm{F}$ | $70^{\circ} \mathrm{C} / 158^{\circ} \mathrm{F}$ |
|  |  | Life-time | > 100,000 h | 70,000 h | 50,000 h |

The LED Driver is designed for a life-time stated above under reference conditions and with a failure probability of less than $10 \%$.

## 3. Installation / wiring

### 3.1 Circuit diagram



### 3.3 Loose wiring

Use a screwdriver with $2.5 \times 0.4 \mathrm{~mm} / 0.098 \times 0.016$ inch.


### 3.2 Wiring type and cross section

The wiring can be in solid wires with a cross section of $0.5-1.5 \mathrm{~mm}^{2} /$
20-16 AWG.
According to safety standard to choose an AWG.
Strip $8.5-9.5 \mathrm{~mm} / 3 / 8$ inch of insulation from the cables to ensure perfect operation of the push-wire terminals. For simultaneous wiring on both sides of the connector strip $7-8 \mathrm{~mm} / 0.315$ inch.
Use one wire for each terminal only.
LED module/LED Driver/supply
wire preparation:
$0.5-1.5 \mathrm{~mm}^{2}$


### 3.4 Wiring guidelines

- The cables should be run separately from the mains connections and mains cables to ensure good EMC conditions.
- The LED wiring should be kept as short as possible to ensure good EMC. The max. secondary cable length is $2 \mathrm{~m} / 6.56 \mathrm{ft}$ ( $4 \mathrm{~m} / 13.12 \mathrm{ft}$ circuit).
- Secondary switching is not permitted.
- The LED Driver has no inverse-polarity protection on the secondary side. Wrong polarity can damage LED modules with no inverse-polarity protection.
- Wrong wiring of the LED Driver can lead to malfunction or irreparable damage.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).


### 3.5 Hot plug-in

Hot plug-in is not supported due to residual output voltage of $>0 \mathrm{~V}$.
If a LED load is connected, the device has to be restarted before the output will be activated again.
This can be done via mains reset or via interface ready2mains.

### 3.6 Earth connection

The earth connection is conducted as protection earth (PE). If the LED Driver will be earthed, protection earth (PE) has to be used. There is no earth connection required for the functionality of the LED Driver.
Earth connection is recommended to improve following behaviour:

- Electromagnetic interferences (EMI)
- Transmission of mains transients to the LED output

In general it is recommended to earth the LED Driver if the LED module is mounted on earthed luminaire parts respectively heat sinks and thereby representing a high capacity against earth.

### 3.7 I-SELECT 2 resistors connected via cable

For details see:
http://www.tridonic.com/com/en/download/technical/LCA_PRE_LC_EXC_ProductManual_en.pdf.

## 4. Electrical values

### 4.1 Operating window



Make sure that the LED Driver is operated within the given window under all operating conditions. Special attention needs to be paid at dimming as the forward voltage of the connected LED modules varies with the dimming level, due to the implemented amplitude dimming technology. Coming below the specified minimum output voltage of the LED Driver may cause the device to shut-down.

### 4.2 Efficiency vs load

$120 \mathrm{~V}, 60 \mathrm{~Hz}$ :


277 V, $60 \mathrm{~Hz}:$

—_ Operating window 100 \%
---------- Operating window dimmed

## LED Driver

Universal wide voltage（UNV）

## 4．3 Power factor vs load

$120 \mathrm{~V}, 60 \mathrm{~Hz}$ ：


277 V， 60 Hz ：

$100 \%$ load corresponds to the max．output power（full load）according to the
table on page 3 ．

## 4．4 THD vs load（without harmonic＜ 5 mA or 0.6 \％of the input current）

$120 \mathrm{~V}, 60 \mathrm{~Hz}:$


277 V， 60 Hz ：


## LED Driver

Universal wide voltage (UNV)

### 4.5 Maximum loading of automatic circuit breakers in relation to inrush current

$120 \mathrm{~V}, 60 \mathrm{~Hz}$ :

| Automatic circuit breaker type | C10 | C13 | C16 | C20 | B10 | B13 | B16 | B20 | Inrush current |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installation Ø | $1.5 \mathrm{~mm}^{2} /$ <br> AWG16 | $1.5 \mathrm{~mm}^{2} /$ <br> AWG16 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | $1.5 \mathrm{~mm}^{2}$ / <br> AWG16 | $1.5 \mathrm{~mm}^{2} /$ <br> AWG16 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | $I_{\text {max }}$ | time |
| LC 35/150-700/54 0-10V C EXC UNV | 43 | 58 | 71 | 85 | 26 | 35 | 43 | 51 | 15.48 A | $185 \mu \mathrm{~s}$ |
| 277 V, 60 Hz : |  |  |  |  |  |  |  |  |  |  |
| Automatic circuit breaker type | C10 | C13 | C16 | C20 | B10 | B13 | B16 | B20 | Inrush current |  |
| Installation Ø | $1.5 \mathrm{~mm}^{2} /$ <br> AWG16 | $1.5 \mathrm{~mm}^{2}$ / <br> AWG16 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | $1.5 \mathrm{~mm}^{2}$ / <br> AWG16 | $1.5 \mathrm{~mm}^{2} /$ <br> AWG16 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | $2.5 \mathrm{~mm}^{2} /$ <br> AWG14 | time |  |
| LC 35/150-700/54 0-10V C EXC UNV | 18 | 25 | 30 | 38 | 11 | 15 | 18 | 23 | 35.2 A | 157 \%s |

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker.
Calculation uses typical values from ABB series S 200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.

### 4.6 Dimming

Dimming range is 1 to $100 \%$.
The operating window shows the minimum reachable power in dimmed state.

### 4.7 Dimming characteristics

## Control input ( $0-10 \mathrm{~V}$ )

| Control input open | max. dimming level |
| :--- | :--- |
| Control input short-circuited | min. dimming level |
| Interface current range | $400-500 \mu \mathrm{~A}$ |
| Max. permitted input voltage | $\pm 16 \mathrm{~V}$ |
| Voltage range dimming | $0-10 \mathrm{~V}^{(1}$ |
| Input voltage $<1 \mathrm{~V}$ | min. dimming level ${ }^{(1}$ |
| Input voltage $>10 \mathrm{~V}$ | max. dimming level ${ }^{(\mathbb{D}}$ |

Interface supports current sink dimmers.
© See graph below (at full load):

5. Interfaces / communication
5.1 Control input ready2mains (L, N)

The digital ready2mains protocol is modulated onto the mains signal which is wired to the mains terminal ( L and N ).

## 6. Functions <br> 6.1 Function: adjustable current

The output current of the LED Driver can be adjusted in a certain range. For adjustment there are two options available.

Option 1: I-SELECT 2
By inserting a suitable resistor or third party resistor into the I-SELECT 2 interface, the current value can be adjusted. The relationship between output current and resistor value can be found in the chapter "Accessories I-SELECT 2 Plugs".

Please note that the resistor values for I-SELECT 2 are not compatible with I-SELECT (generation 1). Installation of an incorrect resistor may cause irreparable damage to the LED module(s)

Resistors for the main output current values can be ordered from Tridonic (see accessories).

Option 2: ready2mains
Adjustment is done by the ready2mains Programmer and the corresponding configuration software (see ready2mains documentation)

The priority for current adjustment methods is I-SELECT 2 followed by ready2mains (lowest priority).

## 6.2 ready 2 mains - configuration

The ready2mains interface enables the configuration of the mostly used parameters via the mains wiring.
In the case of EXC LED Driver, it is the LED output current as well as an optional lockbit to prevent any accidental configuration at a later stage.

The configuration is done via the ready2mains Programmer, either directly at the Programmer itself or via a respective software tool. For details on the configuration via ready2mains see the technical information of the Programmer and its tools.

### 6.3 Short-circuit behaviour

In case of a short-circuit at the LED output the LED output is switched off. After restart of the LED Driver the output will be activated again. The restart can either be done via mains reset or via interface ready2mains.

### 6.4 No-load operation

The LED Driver will not be damaged in no-load operation. The output will be deactivated and is therefore free of voltage. If a LED load is connected the device has to be restarted before the output will be activated again.

### 6.5 Overload protection

If the output voltage range is exceeded the LED Driver turns off the LED output. After restart of the LED Driver the output will be activated again. The restart can either be done via mains reset or via interface ready2mains.

### 6.6 Overtemperature protection

The LED Driver is protected against temporary thermal overheating. Thermal overload protection is triggered if the maximum Tc temperature is exceeded by around 5 to $10^{\circ} \mathrm{C}$ (see page 3 ) and the output current is slowly reduced. The LED Driver can cool down with still having light.

## 7. Miscellaneous

### 7.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to UL 8750 (informative only!) each luminaire should be submitted to an insulation test with 500 V D. The dielectric withstand test equipment shall employ a transformer of 500-VA or lager capacity and have a variable output voltage that is essentially sinusoidal or continuous direct current. The applied potential is to be increased from zero at a substantially uniform rate until the required test level is reached, and is to be held at that level for 1 minute.

As an alternative, UL8750 (informative only!) describes a test of the electrical strength with $2 \mathrm{~V} \mathrm{AC}+1000 \mathrm{~V}$ (or $1.414 \times \mathrm{V}$ DC). To avoid damage to the electronic devices this test must not be conducted.

### 7.2 Conditions of use and storage

Humidity:
$5 \%$ up to max. $85 \%$, not condensed (max. 56 days/year at $85 \%$ )

Storage temperature: $\quad-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$
The devices have to be acclimatised to the specified temperature range (ta) before they can be operated.

### 7.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.
The actually achieved number of switching cycles is significantly higher.

### 7.4 Additional information

Additional technical information at www.tridonic.com $\rightarrow$ Technical Data
Guarantee conditions at www.tridonic.com $\rightarrow$ Services

Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.


[^0]:    Standards, page 5

[^1]:    ${ }^{1}$ Valid at $100 \%$ dimming level.
    ${ }^{(2)}$ Depending on the selected output current.

