TRIDONIC

FL ballasts

Electronic dimming

PCA T8 EXCEL one4all Ip x!tec II, 18 - 58 W
EXCEL T8

Product description

- Processor-controlled ballast with x.tec II inside
- Highest possible energy class CELMA EEI = A1 BAT®
- Noise-free precise control via DALI or DSI signal, switchDIM or corridorFUNCTION
- Nominal life up to $100,000 \mathrm{~h}$ (at ta $50^{\circ} \mathrm{C}$ with a failure rate max. 0.2% per 1,000 h)
- OEM-specific reserved memory areas
- Extended DALI commands
- 5 years guarantee

Interfaces

- DALI
- DSI
- switchDIM (with memory function + selectable dimming rate)
- corridorFUNCTION (3 preprogrammed profiles + individually programmable)
- Integrated SMART interface for function with all SMART Sensors and SMART plugs of the x:tec II range

Functions

- Intelligent Temperature Guard (overtemperature protection)
- Intelligent Voltage Guard (overvoltage indication and undervoltage shutdown)
- Optimum filament heating in any dimmer setting
- Disconnection of filament heating from a dimming level of approx. 90 \% for maximum energy efficiency (SMART-Heating concept)
- Fade rates between 100 ms and 90 s (min. - max.)
- corridorFUNCTION with ambient light control
- Automatically triggered emergency lighting value in DC mode 15 \%, can be set between 1 and 100%
- For emergency lighting systems as per EN 50172
- Automatic start after replacement of defective lamps
- Automatic shutdown if the lamp is faulty
- Dimming possible in DC mode

\rightarrow

Standards, page 3
Wiring diagrams and installation examples, page 8

Technical data	$220-240 \mathrm{~V}$
Mains voltage range	$198-264 \mathrm{~V}$
AC voltage range	$176-280 \mathrm{~V}$ (lamp start $\geq 198 \mathrm{~V} \mathrm{DC})$
DC voltage range	$0 / 50 / 60 \mathrm{~Hz}$
Mains frequency	$320 \mathrm{~V} \mathrm{AC}, 1 \mathrm{~h}$
Overvoltage protection	$<0.2 \mathrm{~W}$
Typ. power input on standby	0.5 s for $\mathrm{AC} / 0.2 \mathrm{~s}$ for DC
Protective hot restart	$1-100 \%$
Dimming range	1%
Lamp start possible from	$\sim 40-130 \mathrm{kHz}$
Operating frequency	$\mathbb{P} 20$
Type of protection	

Type	Article number	Packaging, carton	Packaging, pallet	Weight per pc.
For luminaires with 1 lamp				
PCA 1x18 T8 EXCEL one4all Ip xitec II	22185239	$10 \mathrm{pc}(\mathrm{s})$.	$760 \mathrm{pc}(\mathrm{s})$.	0.228 kg
PCA 1x36 T8 EXCEL one4all Ip xitec II	28000034	$10 \mathrm{pc}(\mathrm{s})$.	$760 \mathrm{pc}(\mathrm{s})$.	0.222 kg
PCA 1x58 T8 EXCEL one4all Ip xitec II	28000036	$10 \mathrm{pc}(\mathrm{s})$.	$760 \mathrm{pc}(\mathrm{s})$.	0.236 kg
For luminaires with 2 lamps				
PCA 2×18 T8 EXCEL one4all Ip xitec II	22185242	$10 \mathrm{pc}(\mathrm{s})$.	$760 \mathrm{pc}(\mathrm{s})$.	0.256 kg
PCA 2×36 T8 EXCEL one4all Ip xitec II	28000038	$10 \mathrm{pc}(\mathrm{s})$.	$760 \mathrm{pc}(\mathrm{s})$.	0.256 kg
PCA 2×58 T8 EXCEL one4all Ip xitec II	28000040	$10 \mathrm{pc}(\mathrm{s})$.	$640 \mathrm{pc}(\mathrm{s})$.	0.338 kg

FL ballasts
Electronic dimming

Specific technical data

Lamp wattage	Lamp type	Type	Article number	Dimensions LxWxH	Hole spacing D	Lamp power ${ }^{(2)}$	Circuit power(2)	EEI	Current at 50 Hz 230 V (2)	$\begin{gathered} \lambda \text { at } \\ 50 \mathrm{~Hz} 230 \mathrm{~V} \end{gathered}$	tc point max.	Ambient temperature ta ${ }^{3}$
For luminaires with 1 lamp												
$1 \times 18 \mathrm{~W}$	T8	PCA 1x18 T8 EXCEL one4all Ip xitec II	22185239	$360 \times 30 \times 21 \mathrm{~mm}$	350 mm	16 W	18.5 W	A1 BAT	0.08 A	0.96	$80^{\circ} \mathrm{C}$	$-25 \ldots 70^{\circ} \mathrm{C}$
$1 \times 36 \mathrm{~W}$	T8	PCA 1x36 T8 EXCEL one4all Ip xitec II	28000034	$360 \times 30 \times 21 \mathrm{~mm}$	350 mm	32 W	35.0 W	A1 BAT	0.16 A	0.98	$85^{\circ} \mathrm{C}$	$-25 \ldots 70^{\circ} \mathrm{C}$
$1 \times 58 \mathrm{~W}$	T8	PCA 1x58 T8 EXCEL one4all Ip xıtec II	28000036	$360 \times 30 \times 21 \mathrm{~mm}$	350 mm	50 W	54.0 W	A1 BAT	0.24 A	0.98	$85^{\circ} \mathrm{C}$	$-25 \ldots 70^{\circ} \mathrm{C}$

For luminaires with 2 lamps

| $2 \times 18 \mathrm{~W}$ | T8 | PCA 2x18 T8 EXCEL one4all Ip x:tec II | 22185242 | $360 \times 30 \times 21 \mathrm{~mm}$ | 350 mm | 32 W | 37.5 W | A1 BAT | 0.16 A | 0.98 | $75^{\circ} \mathrm{C}$ | $-25 \ldots 60^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \times 36 \mathrm{~W}$ | T8 | PCA $2 \times 36 \mathrm{~T}$ EXCEL one4all Ip x:tec II | 28000038 | $360 \times 30 \times 21 \mathrm{~mm}$ | 350 mm | 64 W | 70.0 W | A1 BAT | 0.31 A | 0.97 | $80^{\circ} \mathrm{C}$ | $-25 \ldots 60^{\circ} \mathrm{C}$ |
| $2 \times 58 \mathrm{~W}$ | T8 | PCA 2×58 T8 EXCEL one4all Ip x:tec II | 28000040 | $425 \times 30 \times 21 \mathrm{~mm}$ | 415 mm | 100 W | 107.5 W | A1 BAT | 0.48 A | 0.99 | $80^{\circ} \mathrm{C}$ | $-25 \ldots 5 \circ^{\circ} \mathrm{C}$ |

${ }^{(1)}$ According to the EU directives on ecodesign requirements (EC) No. 245/2009 and (EC) No. 347/2010.
(2) Valid at 100% dimming level.
(3) $+10^{\circ} \mathrm{C}$ to ta max: unrestricted dimming. $-25^{\circ} \mathrm{C}$ to $+10^{\circ} \mathrm{C}$: unrestricted dimming from 100% to 30%.
$-25^{\circ} \mathrm{C}$ to $+10^{\circ} \mathrm{C}$, dimming below 30% : malfunction possible but no damage to ECG . This applies to AC and DC operation.

FL ballasts

Electronic dimming

Standards

EN 55015
EN 60929
EN 61000-3-2
EN 61347-2-3
EN 61547
Suitable for emergency installations according to
EN 50172
CISPR 15
CISPR 22
IEC 60929
IEC 61000-3-2
IEC 61347-2-3
IEC 61547
IEC 62386 (according to DALi standard V1)

Lamp starting characteristics

Warm start
Starting time 0.5 s with AC
Starting time 0.2 s with DC
Start at any dimming level

AC operation

Mains voltage
$220-240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$
198-264V 50/60 Hz including safety
tolerance (± 10 \%)
198-254V 50/60 Hz including performance
tolerance (+6 \%/-8 \%)

DC operation

$220-240 \mathrm{~V} 0 \mathrm{~Hz}$
198-254V 0 Hz certain lamp start
$176-280 \mathrm{~V} 0 \mathrm{~Hz}$ operating range
Use in emergency lighting installations according to
EN 50172 or for emergency luminaires according
to EN 61347-2-3 appendix J.
Mains current for defective or missing lamps at DC operation $<35 \mathrm{~mA}$.

Light output level in DC operation

Programmable from 1 \% to 100 \%
Programming by extended DSI or DALI signal (16 bit). Default value is 15 \%
In DC operation dimming mode can be activated
EBLF $=0.5 \times$ adjusted $D C$ dimming level
(e.g. 0.5×0.7).

Emergency units

The "PCA T8 EXCEL one4all Ip xitec II" ballasts are compatible with all emergency units from Tridonic. See the table in the data sheet. Also all " 5 -pole" emergency units can be used. When used with other emergency units tests are necessary.

Temperature range

Unlimited dimming range from $10^{\circ} \mathrm{C}$ to ta max. $-25^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$: dimming operation from 100% to 30%. If dimm level goes below 30% malfunction possible, but no electronic ballast damage.
This applies to AC and DC operation.

FL ballasts

Electronic dimming

Dimming

Dimming curve is adapted to the eye sensitiveness. Dimming range 1% to 100 \%
Digital control with:

- DSI signal: 8 bit Manchester Code

Speed 1% to 100% in 1.4 s

- DALI signal: 16 bit Manchester Code

Maximum speed 1% to 100% in 550 ms
(adjustable between 100 ms and 90 s)
Programmable parameter:
Minimum dimming level
Maximum dimming level
Default minimum $=1 \%$
Default maximum $=100 \%$
Control input (DA/D1, DA/D2)
Digital DALI/DSI signal or a push-to-make switch (switchDIM) or a motion detector (corridorFUNCTION) can be wired on the same terminals (DA/D1 and DA/ D2).

Digital signal DALI/DSI

The control input is non-polar and protected against accidental connection with a mains voltage up to 264 V . The control signal is not SELV. Control cable has to be installed in accordance to the requirements of low voltage installations.
Different functions depending on each module.

SMART interface

An additional interface for the direct connection of the SMART-Sensoren or SMART-Plugs.
For precise instructions relating to the available sensors and plugs and for a description of how they work in connection with the PCA devices please see the separate documentation for PCA xitec II.
The equipment must be installed in accordance with the relevant directives on low voltage. Ensure that power to the ballast is switched off before connecting or disconnecting the sensors and plugs.

switchDIM

Integrated switchDIM function allows a direct connection of a push to make switch for dimming and switching.
Brief push ($<0.6 \mathrm{~s}$) switches ballast ON and OFF. The ballasts switch-ON at light level set at switch-OFF. After switch ON the last settet dimming level will be activated again.
When the push to make switch is held, PCA ballasts are dimmed. After repush the PCA is dimmed in the opposite direction.
The switchDIM fade time is set to 3 s from min. to max. in the factory settings. With a 20 s push to the push to make switch this fade time can be changed to 6 s . In this instance the switchDIM application will be synchronized to 50% light level after 10 s and after 20 s the light level rises to 100% with the new fade time.
At every synchronizsation (10s keystroke) the device will reset to 3 s (factory setting)
In installations with PCAs with different dimming levels or opposite dimming directions (e.g. after a system extension), all PCAs can be synchronized to 50 \% dimming level by a 10 s push.
Use of push to make switch with indicator lamp is not permitted.
switchDIM and corridorFUNCTION are very simple tools for controlling ballasts with conventional momentaryaction switches or motion sensors. To ensure correct operation a sinusoidal mains voltage with a frequency

Dimming characteristics
PCA T8 EXCEL one4all Ip xitec II

Dimming characteristics as seen by the human eye
of 50 Hz or 60 Hz is required at the control input. Special attention must be paid to achieving clear zero crossings. Serious mains faults may impair the operation of switchDIM and corridorFUNCTION.

corridorFUNCTION

To activate the corridorFUNCTION a voltage of 230 V simply has to be applied for five minutes at switchDIM connection. The unit will then switch automatically to the corridorFUNCTION.
Note: If the corridorFUNCTION is wrongly activated in a switchDIM system (for example a switch is used instead of pushbutton), there is the option of installing a pushbutton and deactivating the corridorFUNCTION mode by five short pushes of the button within three seconds.
The corridorFUNCTION offers the added benefit of a second and third preprogrammed profile, which can be activated by the SMART-Plugs.
It is also possible to combine the corridorFUNCTION with the SMART-Sensor 5D $19 f$ light sensor. Application and functionallity of profiles see user manual of the corridorFUNCTION.

Energy saving
PCA T8 EXCEL one4all Ip xitec II
mains power in \%

switchDIM PCA T8 EXCEL one4all Ip x.tec II

corridorFUNCTION PCA T8 EXCEL one4all Ip x:tec II

DSI PCA T8 EXCEL one4all Ip xitec II

DALI PCA T8 EXCEL one4all Ip x:tec II

FL ballasts

Electronic dimming

Loading of automatic circuit breakers (Limitation via inrush current)

Automatic circuit breaker type	C10	C13	C16	C20	B10	B13	B16	B20	Inrush current (1.5mm²)		Inrush current (2.5 mm²)	
Installation \emptyset	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$1.5 \mathrm{~mm}^{2}$	$2.5 \mathrm{~mm}^{2}$	$\mathrm{I}_{\text {max }}$	time	$I_{\text {max }}$	time
PCA 1x18 T8 EXCEL one4all Ip x:tec II	50	82	161	201	25	41	120	107	19.3A	166μ s	19.7A	165 н
PCA 1x36 T8 EXCEL one4all Ip x:tec II	36	54	80	92	18	27	40	46	19.2 A	189μ s	19.6 A	187 нs
PCA 1x58 T8 EXCEL one4all Ip x:tec II	22	34	46	54	11	17	23	27	24.7 A	224 ¢	24.4 A	227 нs
PCA 2×180 T8 EXCEL one4all Ip xtec II	34	50	76	86	17	25	38	43	20.3 A	$204 \mu \mathrm{~s}$	23.3 A	$184 \mu \mathrm{~s}$
PCA 2x36 T8 EXCEL one4all Ip x:tec II	22	32	42	52	11	16	22	26	26.4 A	210 нs	27.2 A	$207 \mu \mathrm{~s}$
PCA 2x58 T8 EXCEL one4all Ip x:tec II	16	22	28	34	8	11	15	17	28.6 A	290 нs	29.1 A	289 нs

Continuous operation: to calculate the protective saftey switch see main current, page 2

Intelligent Voltage Guard

Intelligent Voltage Guard is the name of the electronic monitor from Tridonic. This innovative feature of the PCA family of control gear from Tridonic immediately shows if the mains voltage rises above certain thresholds. Measures can then be taken quickly to prevent damage to the control gear.

- If the mains voltage rises above approx. 318Vrms (voltage depends on the ballast type), the lamp starts flashing on and off.
- To avoid a damage of the device the mains supply has to be switched off at this signal.

Intelligent Temperature Guard

The intelligent temperature guard protects the PCA T8 EXCEL one4all Ip xitec II from thermal overheating by reducing the output power or switching off in case of operation above the thermal limits of the luminaire or ballast. Depending on the luminaire design, the ITG operates at about 5 to $10^{\circ} \mathrm{C}$ above tc temperature.

Type	Lamp type	Wattage	THD	3	5	7	9	11
PCA 1x18 T8 EXCEL one4all Ip xıtec II	T8	1x18W	9	5	2	1	1	1
PCA 1x36 T8 EXCEL one4all Ip xıtec II	T8	1x36W	8	4	4	2	2	2
PCA 1x58 T8 EXCEL one4all Ip xıtec II	T8	1x58W	6	5	2	2	1	1
PCA 2×18 T8 EXCEL one4all Ip xtec II	T8	2x18W	8	5	2	1	1	1
PCA 2x36 T8 EXCEL one4all Ip x!tec II	T8	2x36W	7	5	1	1	1	2
PCA 2x58 T8 EXCEL one4all Ip xıtec II	T8	2x58W	6	5	1	1	1	1

Operating voltage			
Type	Lamp type	Wattage	Oout
PCA 1x18 T8 EXCEL one4all Ip x:tec II	T8	$1 \times 18 \mathrm{~W}$	430 V
PCA 1x36 T8 EXCEL one4all Ip x:tec II	T8	$1 \times 36 \mathrm{~W}$	430 V
PCA 1x58 T8 EXCEL one4all Ip x:tec II	T8	$1 \times 58 \mathrm{~W}$	430 V
PCA 2×18 T8 EXCEL one4all Ip x:tec II	T8	$2 \times 18 \mathrm{~W}$	430 V
PCA 2×36 T8 EXCEL one4all Ip x:tec II	T8	$2 \times 36 \mathrm{~W}$	430 V
PCA 2×58 T8 EXCEL one4all Ip x:tec II	T8	$2 \times 58 \mathrm{~W}$	430 V

Humidity:
5% up to max. 85%, not condensed (max. 56 days/year at 85%)

Storage temperature: $-40^{\circ} \mathrm{C}$ up to $\max .+80^{\circ} \mathrm{C}$
The devices have to be within the specified temperature range (ta) before they can be operated.

Type	Lamp type	Wattage		ta $=40^{\circ} \mathrm{C}$	ta $=50^{\circ} \mathrm{C}$	ta $=60^{\circ} \mathrm{C}$
PCA 1x18 78 EXCEL one4all Ip xitec II	T8	$1 \times 18 \mathrm{~W}$	tc	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
			Lifetime	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$
PCA 1x36 T8 EXCEL one4all Ip xitec II	T8	$1 \times 36 \mathrm{~W}$	tc	$55^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
			Lifetime	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$
PCA 1×58 T8 EXCEL one4all Ip xitec II	T8	$1 \times 58 \mathrm{~W}$	tc	$55^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$
			Lifetime	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$
PCA 2×18 T8 EXCEL one4all Ip xtec II	T8	$2 \times 18 \mathrm{~W}$	tc	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
			Lifetime	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$	$\geq 50,000 \mathrm{~h}$
PCA 2×36 T8 EXCEL one4all Ip xitec II	T8	$2 \times 36 \mathrm{~W}$	tc	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
			Lifetime	$\geq 100,000 \mathrm{~h}$	$\geq 100,000 \mathrm{~h}$	$\geq 50,000 \mathrm{~h}$
PCA 2×58 T8 EXCEL one4all ip xitec II	T8	$2 \times 58 \mathrm{~W}$	tc	$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$
			Lifetime	$\geq 100,000 \mathrm{~h}$	$\geq 50,000 \mathrm{~h}$	$\geq 50,000 \mathrm{~h}$

[^0]
FL ballasts

Electronic dimming

Installation instructions

Wiring type and cross section

The wiring can be solid cable with a cross section of 0.5 to $0.75 \mathrm{~mm}^{2}$ for push terminal and $0.5 \mathrm{~mm}^{2}$ for IDC terminal. For the push-wire connection you have to strip the insulation ($8-9 \mathrm{~mm}$).

twisting and pulling

Wiring advice

The lead length is dependent on the capacitance of the cable.

Ballast	Terminal		Maximum capacitance allowed		
Type	Cold	Hot	Cold	Hot	
PCA 1xx T8 EXCEL one4all Ip x:tec II	13,14	15,16	200 pF	100 pF	
PCA 2xx T8 EXCEL one4all Ip x:tec II	$12,13,14$	$10,11,15,16$	200 pF	100 pF	

With standard solid wire $0.5 / 0.75 \mathrm{~mm}^{2}$ the capacitance of the lead is $30-80 \mathrm{pF} / \mathrm{m}$.
This value is influenced by the way the wiring is made.
Lamp connection should be made with symmetrical wiring.
Hot leads $(10,11,15,16)$ and cold leads $(12,13,14)$ should be separated as much as possible.
When using two or more dimmable ballasts in one luminaire with separate dimming controls, the lamp leads must be kept separate.

Sensor wires

Sensor wires must be routed separately from the lamp wires and mains cables otherwise the lighting control system may malfunction. If separate routing is not possible (for reasons of space) shielded lamp wires and mains cables must be used.

Dimmable ballasts from Tridonic have to be earthed.
To avoid the damage of the control gear, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).

PCA T8 EXCEL one4all Ip x!tec II 1x18-58 W
Dimmable ballasts from Tridonic have to be earthed.

RFI

- Connection to the lamps of the hot leads must be kept as short as possible
- Mains leads should be kept apart from lamp leads (ideally $5-10 \mathrm{~cm}$ distance)
- Do not run mains leads adjacent to the electronic ballast
- Twist the lamp leads
- Keep the distance of lamp leads from the metal work as large as possible
- Mains wiring to be twisted when through wiring
- Keep the mains leads inside the luminaire as short as possible

General advise

Electronic ballasts are virtually noise free.
Magnetic fields generated during the ignition cycle
can cause some background noise but only for a
few milliseconds.

Operation on DC voltage

Our ballasts are construed to operate DC voltage and pulsed DC voltage.
To operate ballasts with pulsed DC voltage the polarity is absolute mandatory.

Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage.
This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 VDC for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.
As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 VAC (or $1.414 \times 1500 \mathrm{VDC})$. To avoid damage to the electronic devices this test must not be conducted.

Glow-wire test according to EN 60598-1

$650^{\circ} \mathrm{C}, 750^{\circ} \mathrm{C}$ and $850^{\circ} \mathrm{C}$ passed

Additional information

Additional technical information at www.tridonic.com \rightarrow Technical Data

Guarantee conditions at
www.tridonic.com \rightarrow Services
Lifetime declarations are informative and represent no warranty claim.
No warranty if device was opened.

Programming

With appropriate software and a USB interface different functions can be activated and various parameters can be configured in the new PCA TC EXCEL one4all Ip x:tec II. All that is needed is a DALI-USB and the software.

Master Configurator

For programming the corridorFUNCTION, device configuration (fade time, ePowerOnLevel, etc.) DC level, compatibility settings, and startup date and for resetting.
Maximum amount of ballast see DALI/DSI specification.

[^0]: $x=$ not permitted

